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AbstracL In this paper, we discus a dass of quasione-dimensional models mntaming 
both spins and charge, which share the same generic mlutions. In parlidar,  we mn- 
centrate on a Heisenberg model of a topologically frustrated antiferromagnet, and a d-p 
model for q g e n  hole hopping in a subgeometry of lhe mpper-qgen plane of the 
pemvskite supenwnductors. The outslanding feature of these models lies in the simplicily 
of their solutions: their ground states are exact and mnlain uncorrelakd, shorl-ranged 
singlet pin. Fxcilations in l h e x  models tall into WO distinct d a w ,  namely, spin-) 
chargeless domain-wall excitations or %pinons’, together with their conjugate excitations. 
which lake the [om of spin-f chargeless ‘antispinon’ domain walls in lhe Heisenberg 
model, and spinless charge +e hole fxcitations or ‘holons‘ in the d-p model. In the 
ase of the Heisenberg model, we have successfully mnstruned a sufficiently simple 
repmenlation for the ‘spinon’ excilalion which allows us to calculate its dispersion using 
elementary methods. This is therefore a mncrele example of a ‘spinon’ excitation for 
which explicit representation has been W i b l e .  

1. Intmduction and motivation 

It is now widely accepted that the basic properties of ordinary unfrustrated (Le. hi- 
partite) Heisenberg antiferromagnets may be understood in simple, essentially classi- 
cal terms [l]. Even in the extreme quantum mechanical limit of such a magnet being 
made up of spin-; atoms, quantum mechanical fluctuations appear to have a minor 
effect, and the corresponding ordered ground state is N&el-like, with spins being in 
antiparallel arrangement along an arbitrary axis of quantization. The character of 
this ground state provides us, moreover, with information about the nature of its 
excitations: the N6el state has a (quasi)-infhite degeneracy associated with allowed 
rotations of the axis of spin quantization, and it is known from Goldstone’s theorem 
[Z], which applies in such systems, that the excitations must correspondingly be gap- 
less. The lowest-lying excitations in fact represent small precessions of the axis of spin 
quantization which propagate through the system in the form of very low-frequency 
waves; the socalled spin waves. 

Frustrated Heisenberg antiferromagnets, on the other hand, do not present such 
a well understood case. For instance, there is as yet no conclusive evidence, either 
theoretical or experimental, as to the nature of the ground state of a topologically 
frustrated twodimensional antiferromagnet with spin-$ atoms, although it is believed 
that such a ground state probably does not exhibit the continuously broken symmetry 
expected classically and that it is in a real sense intrinsically quantum mechanical. As 
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6820 S C Y S i a k a n d M W L o n g  

an example, experiments on the layered compound SrCr,-,Ga,+,O,,, which con- 
tains planes of magnetic spin-; chromium ions that are connected in the form of 
a frustrated Kagom6 net, suggest the absence of N k l  ordering in the ground state 
(31. Instead, the short-ran ed magnetic correlations that are found, with correlation 

It is possible that the antiferromagnetic ground state for a collection of spin-$ atoms 
on a triangular lattice may likewise not exhibit continuous rotational degeneracy; in 
the case of the latter, a resonating-valence-bond (RVB) ground state has in fact been 
conjectured [4], although a signature of such an RVB state has not been detected 
experimentally. Both the quantum mechanical ground states postulated above are 
radically different from their classical analogues: the continuously broken symmetry 
which characterizes the latter is replaced in tBe former by a discrete symmetry break- 
ing. Goldstone’s theorem is not essential in such systems, and this in turn allows @ut 
does not necessitate) the possibility of gapped excitations. 

A major factor which has hitherto hampered progress in our understanding of 
frustrated antiferromagnets has been the paucity of simple, tractable models with 
exact solutions. In this paper, we present a quasi-onedimensional, topologically frus- 
trated Heisenberg antiferromagnet which has as its most distinctive feature unusually 
simple, purely quantum mechanical solutions. In particular, the lowest-energy solu- 
tion is exact: there are two degenerate ground states, each consisting of uncorrelated 
short-ranged singlet or dimer pairs. The simplicity of this ground state allows us to 
elucidate the elementary excitations of the model rather thoroughly. We find a gap 
to excitations, which we interpret as being due to the formation of spin-4 domain 
walls. We also find that, due to a topological asymmetry in our model, there are WO 
classes of domain wall present: one class incurs an energy cost and exhibits disper- 
sion, whilst the second class costs no energy to create and is dispersionless. The first 
class of domain wall provides us with examples of the type of excitation known in the 
literature as spinons [5],  and the second class of domain wall, being conjugate to the 
first, will therefore be henceforth referred to as antispinon. 

Our motivation for introducing this particular magnetic model stems Erst from 
the simplicity of its ground state, which allows us to construct almost exact repre- 
sentations for its spinon excitations, and secondly from the fact that there appears 
to be an entire class of one-dimensional models, including some containing mobile 
charged vacancies or holes, which exhibit the same generic solutions as those de- 
scribed above. In particular, we discw huo quasi-one-dimensional models of direct 
relevance to high-temperature superconductivity, whose lowest-energy solutions are 
exactly analogous to those of our Heisenberg model. In these high-T, models, short- 
ranged singlet correlations between spins are induced via the motion of charged 
vacancies. The resulting ground states exhibit the broken symmetry reminiscent of 
our Heisenberg model, and their elementary excitations also fall into two distinct, 
asymmetric classes. In the case of the high-T, models, these excitations consist of 
spin-$, chargeless domain walls (spinons) together with spinless, charge +e vacancy 
excitations (holons/antispinons). 

We note, however, that none of the models in this class can undergo a supercon- 
ducting transition. Their strength, namely the simplicity of their solutions, is mainly 
a consequence of constraints imposed by their topology and their one-dimensionality, 
but unfortunately these Same topological constraints prevent any two charged ex- 
citations in the models from approaching one another, which in turn means that 
charge-pairing fluctuations cannof occur. 

lengths of the order of 7 1. mdicate a ground state with discretely broken symmetry. 
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Nonetheless, there are two key features in our models which we believe on 
experimental grounds to be generic to the superconducting cuprates, namely a charge- 
carrier-induced paramagnetic ground state, and an energy gap to magnetic excitations. 
Our justilication for the above claim, which we will now discuss, is based on the re- 
sults of neutron scattering as well as NMR measurements. We stress at the outset that 
some of the experimental results which we discuss shortly are not clear-cut; indeed, 
many of the issues remain controversial, but we feel nevertheless that these rather 
intriguing results should not simply be dismissed, and offer in this paper a theoretical 
model which appears to be consistent with them. 

Firstly, it is now known [6] that the undoped cuprates are antiferromagnetic 
insulators with spins which reside on the Cu sites, and that when these materials 
are doped with holes, which appear to be at the 0 sites, the antiferromagnetic 
correlations are destroyed. However, the concentration of doped holes need not be 
high before anitferromagnetic order disappears; for instance [q, in La,-,Sr,CuO,, 
magnetism is essentially destroyed when 25% of the La atoms have been replaced 
by Sr, which corresponds to holes sitting at about 1 in 40 of the 0 sites. Moreover, 
inelastic neutron scattering experiments indicate that the Cu spins are preserved at 
this level of doping, but since the correlations between them largely appear to have 
been destroyed, it is natural to assume a paramagnetic state for the Cu moments. 

Secondly, and more controversially, there is evidence from both inelastic neu- 
tron scattering [SI as well as N h f ~  [9] experiments that a gap opens up in the spin 
excitation spectrum at temperatures well dove T,. One example of an experiment 
which can probe these magnetic excitations was performed by Shirane et a1 [SI on 
La,-,Sr,CuO, using neutrons. They measured the output intensity of the (mag- 
netically) scattered component, integrated this output over all relevant angles, and 
studied the integrated intensity as a function of temperature. This integrated inten- 
sity, which is essentially a measure of the number of magnetic excitations present, was 
found to exhibit a dramatic decline at about 150 K in La,-,Sr,CuO,, for which T, 
by contrast is approximately 33 K. These results, if correct, suggest a gap opening up 
in the magnetic excitation spectrum, in contradistinction to the superconducting gap. 
We stress again that controversy still surrounds the above results, but more recent 
work by Rossat-Mgnod’s group [SI in fact appears to confirm the presence of a spin 
excitation gap. 

&citation gaps have previously been found by theoreticians to occur in quantum 
mechanical spin systems [lo]. most notably in spin-$ systems in which frustration is 
caused not by lattice topology but by the presence of conflicting interactions between 
the spins. There is in fact an exactly solved model-the so-called Majumdar-Ghosh 
chain [lo], in which spin-$ atoms are couple4 not just via nearest-neighbour interac- 
tions but also via next-nearest-neighbour interactions, with the bond strength of the 
latter being exactly half that of the former. Solutions of the Majumdar-Ghosh chain 
are very similar to those of our models [lo]. Like our models, the Majumdar-Ghosh 
chain has a twofold degenerate, broken-symmetry ground state containing uncorre- 
lated, short-ranged singlet pairs. There is similarly a gap to its excitations which can 
be interpreted as being due to the formation of spin-+ domain walls. However, the 
lack of topological asymmetry in the chain means that only one class of domain wall is 
created. Hence excited states of the Majumdar-Ghosh chain contain many equivalent 
spin-$ domain walls, and it turns out that such states are in fact much more dacu l t  
to analyse than the corresponding states in our models which contain distinct classes 
of excitations. 
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The rest of our discussion is divided as follows. In section 2, we introduce the 
topologically fruscrated Heisenberg antiferromagnetic model which forms the QUX 
of this paper. We concentrate in particular on trying to understand the gapped 
excitations in our mode. We present detailed analytical and numerical evidence for 
the hvo classes of spin-: domain wall in the model. We then show that the solutions 
for our Heisenberg antiferromagnet are not uniquely restricted to a specific model 
but are in fact generic to a whole class of onedimensional systems. In section 3, 
we discuss WO electronic systems containing mobile charged vacancies: a t-J model 
for hole hopping on a frustrated, quasi-one-dimensional lattice, and a d-p model 
for hole motion on a restricted sub-geometry of the Cu-0 plane of the perowkite 
superconductors. We show in both the above cases that the ground states contain 
uncorrelated, short-ranged singlet pairs and that the excitations fall into two distinct 
classes. In section 4, we conclude with a brief summary. 

2. An exactly solvable spin-f Heisenberg model: spinon and antispinon excitations 

In this section, we discuss a quasi-onedimensional, quantum mechanical Heisen- 
berg model of an antiferromagnet which has unusually simple solutions. The model 
contains spin-h atoms, each of which is assumed to interact only with its nearest 
neighbours via the Heisenberg exchange. The atoms in our model are situated at 
the sites of a lattice with topological frustration, namely the linear chain of triangles 
shown in figure 1. We will henceforth refer to this configuration as the sawtooth 
topology, and will regard the sawtooth as being made up of a chain of backbone 
atoms cnnnected to vertex atoms (cf figure 1). 

Flgure L The onedimensional lattice of triangles which we leter la as Ihe sawtooth. 
Vena' sites are denoted by Roman lettering, while 'backbone' sites are denoted by 
Greet lettering. 

Our starting point is the Heisenberg Hamiltonian 

(2.la) 

which for the sawtooth topology can be expressed in terms of the total spin of the 
atoms in each independent triangle: 

In the above equations, Si = ~c~,-J,,.,,c~.,, denotes the spin operator at the ith 
lattice site, cj, being the operator which creates an electron of spin U at the ith 
lattice site (ci, is its conjugate operator) and CT being the Pauli operator. In addition, 
J is the coupling parameter between any nearest-neighbour pairs of spins, denoted 
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by the brackets (), S, represents the total spin in a triangle, NT is the total number 
of triangles, and the summation is either over all pairs of nearest-neighbour spins, as 
in (21~). or altematively, over all triangles in the lattice, as in (2.16). 

Our main motivation for examining the above model lies in the fact that it exhibits 
solutions which are especially simple. In particular, its ground state is exact, and there 
is therefore the possibility of obtaining a simple picture for its excitations. 

We probe the above spin system via a mixture of analytical as well as numerical 
techniques, which we will describe in greater detail in the course of our discussion. 

The ground state of the sawtooth model has been described elsewhere [Ill,  but 
we include an account here for completeness. The ground state is double degenerate 
and consists of uncorrelated, short-ranged singlet pairs (see figures 2(a) and (6)). It 
is important m note that there is absolutely no correlation between any two pairs of 
singlets, not even between nearest-neighbour pairs. In other words, (Si . Sj)  = 0 
for any i , j  lying on different triangles, and this ground state can be written down 
exactly. 

( 1 ) )  

Figure 2 'The =act, doubly degenerate ground states of our Heisenberg model. All 
spins on the lattice are paired up mto short-ranged singlets or valence bonds (denoted 
m bold), and the ground .date exhibits the bmken W m e y  s h m .  

We can understand the above result for the ground state by observing that the 
Hamiltonian for the sawtooth (2.lb) is minimized by independently minimizing the 
total spin in each triangle. Quantum mechanically, this means that the total spin in 
every triangle is 4, leading to a ground state energy of 

which depends only on the number of triangles in the system. A total spin of $ 
in each triangle can, in turn, be achieved by having, in every triangle, one nearest- 
neighbour singlet pair and one unpaired spin which is then free to bmd into a singlet 
pair with a spin in the next (adjacent) triangle, and so on, thus forming the ground 
state of independent singlets of figure 2 In principle, other possibilities, such as 
states containing longer-ranged singlet pairs, cannot be excluded, but the only low- 
spin states which exhibit a local broken symmetry are the ones depicted in figure 2, 
and we can prove numerically that they do indeed form the preferred ground state. 

It is interesting to note that this quantum mechanical ground state is radically 
different from its classical counterpart, which is h e a d  made up of [ll] a superpo- 
sition of infinitely many possible states containing spins pointing in directions that 
are at 120" with respect to each other. (Such states are said to contain long-ranged, 
non-collinear magnetic ordering.) 

We now turn to our main concern in this section, namely the spin excitations in 
our Heisenberg model. Let us begin our discussion by stating three numerical results, 
obtained from calculations on small clusters with translational invariance. Fmtly, we 
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find an energy gap between the ground state and the lowest band of excited states, 
with the magnitude of this gap being approximately 0.2 J (figure 3(u)). Secondly, 
we find that the lowest band of excited states (which contains as many states in it 
as there are unit c e b  in the lattice) exhibits a flat energy spectrum, i.e. the E(K)  
versus h dispersion curve scales to become flat (figure 3(b)), in which we plot the 
width of the first band as a function of inverse system size. Thirdly, our numerical 
calculations show that the lowest band of excited states belongs to the subspace of 

S C YSiak and M WLong 

spin states with total spin 1. 

Figure 5 (a) The energy gap bemeen the p u n d  -le and the I k t  bend of adfed 
stales, plotted as a bunclion of invetse system size, for wtema mnlaining up to 24 
spins. The linear eMrapolalion shown leads lo an energy gap of a20 J for an in~inile 
sysfem. y = 0.201 80 i- 0 . 3 5 5 7 9 ~ .  R2 = 0.998. (b)  The width of Ihe Snf band of 
excited state$ plotted as a funclion of inverse system size. "his firs1 band is dearly RaL 
y = 3,77t18e-~ x 105~2003r, R2 = 0.938. 

Given the nature of the ground state, it is natural to interpret the presence of a 
gap to excitations as being due to the formation of domain walls in the system: in 
order for the domain walls to form, it is necessary for the singlet pairs in the ground 
state to break up, thereby incurring a finite, non-zero energy cost  In a system with 
periodic boundary conditions such as ours, domain walls must in fact be created in 
pairs, the second domain wall being required to restore translational invariance. Since 
the lowest band of excited states has total spin 1, it follows that if these states do 
ddeed contain two domain walls, then each of the domain walls must have spin L 

domain walls as anticipated, but unlike other models in which a spin-I excitation is 
known to split up into two identical spin-; excitations, ours contains a topologial 
asymmetry: it would appear that our domain walls fall into two distinct classes. The 
first class of domain wall in our model costs no energy to create and exists as a 
localized excitation, whilst the second class of domain wall, which costs approximately 
0.2 J to create, has a finite, non-zero coherence length and is delocalized around the 
(localized) domain wall. We will henceforth refer to the second class of excitation as 
the spinon, whilst the first class of excitation, being conjugate to the spinon, we will 
call the antispinon excitation. 

In the rest of this section, we will justify the above interpretation by presenting 
both analytical as well as numerical evidence in its support. We will divide our 

Our picture for an eigenstate lying in the fast band is that it contains two spin-, 2; 
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discussion into two further subsections for easier reading. Our analytical calculations 
form the crux of this work and are presented first, in subsection 21, to be followed 
by numerical results in subsection 22 

2 1. halyrical calculations 

We begin this subsection by discussing the antispinon excitation, which we will show 
incurs no energy cost and exhibits a flat energy spectrum. 

Let us consider the many-spin state IQ*) depicted in figure 4, in which all the spins 
are paired into local, short-ranged singlets except for the spin at the crth backbone 
site. There are three points to note about I@*). Firstly, I@*) differs from the ground 
state shown in figure 2 precisely because of the presence of the unpaired spin. the 
ground state with all its singlet pairs belongs to the spin 0 subspace, whilst I Q a )  
with its single unpaired spin helongs to the subspace of spin 4. Secondly, I Q a , )  
contains a domain wall in the form of the unpaired spin-the unpaired spin separates 
two regions with singlet pairs pointing in 'opposite' directions (figure 4) and in this 
respect, acts as a domain wall. We will return to this point in subsection 22 Thirdly, 
IQ,) is clearly only one member of a large set, denoted M, of manyspin states in 
which all spins bar one are paired up locally into short-fanged singlets, each member 
of the set differing from one another only the position of the unpaired spin and 
not in the number of singlet pairs that they contain 

Figure 4 ?he slate IO,) m which all spins are paired up with their nearest neighbours 
into singlets, except for the spin at the ath backbone site The state shom belongs to 
the set M (see text). 

For the state IQ-), it is easy to prove that 

(2.3) 

ie. that /4)e) is an exact eigenstate of the Heisenberg Hamiltonian on the sawtooth 
lattice, with the eigenvalue Eg being precisely equal to the ground state energy of 

Let us hy to understand the above result. 'Ib see that IQo) must indeed he an 
exact eigenstate of the above Hamiltonian, one need only consider a single triangle: 
for a Heisenberg antiferromagnet with only nearest-neighbour interactions, one singlet 
pair together with one free spin in a triangle constitutes an exact eigenstate, hence 
the state I Q a ) ,  which contains one singlet pair and one free spin in every triangle, 
must correspondingly he an exact eigenstate. lb understand why I Q a )  is energetically 
the same as the ground state, we note that IQe) can be formed by adding one 
unpaired spin to the configuration of ground state singlet pairs, without breaking up 
any singlet pairs. Consequently, the presence of the domain wall in the state IQo) 
does not incur an energy cost, and this is the class of domain wall which we refer to 
as the antispinon. 

We also note that since the above arguments are independent of the position of 
the unpaired spin, it follows that they must hold not just for [Go) but for any state 

(2.2). 
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belonging to the set M. There is therefore a whole set of equations analogous to 
(2.3); one for every member of the set M, all of which have the same eigenvalue 
Eg. In other words, we expect the spin states considered above to exhibit a huge 
degeneracy, and this leads to interesting consequences. 

Suppose we construct normalized Bloch functions 

out of the states in the set M, in which the normalization factor Nk, is found by 
calculation to satisfy 

(2.4b) 

We could obviously construct one Bloch function for every allowed wavevector k, and 
the Bloch functions thus obtained can be shown to be orthogonal to one another. 
The interesting point to note is that because of the degeneracy of the constituent 
spin states, we find 

for any k; that is, each Bloch function associated with a different wavevector k is 
itself an exact eigenstate, and that moreover all these Bloch functions are degenerate 
in energy with eigenvalue Eg. Consequently, the antispinon that is described by a 
wavepacket of these Bloch functions has a flat energy band associated with it. 

What implications do such a flat band have for the antispinon excitation in real 
space? One could answer this question by constructing an antispinon wavepacket in 
real space, and an obvious way of achieving this is by transforming the reciprocal- 
space Bloch functions above back to real space via 

This procedure gives us a Wannier orbital which is centred on, or 'localized', at 
the lattice site p, but which has a finite, non-zero spread over neighbouring lattice 
sites. The finite radius of such an orbital corresponds physically to a finite region 
of coherence for the antispinon domain wall that is represented by the Wdnnier 
wavepacket. One can readily show that these real-space Wannier orbitals, like their 
reciprocalspace Bloch counterparts, form an orthogonal set. 

The important point is that, again 

Hl'I)@) = Esl@@) 0.7) 
for any p. Hence the Wannier orbital thus mnstructed is also an exact eigenstate 
of our Hamiltonian with eigenvalue Eg. Consequently, if the antispinon is initially 
coherent within a certain region of the sawtooth lattice, (the length scale of this region 
being set by the radius of the corresponding Wdnnier orbital), then the antispinon 
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will remain localized in that region. On the other hand, since the Wnnier orbitals 
centred at the different lattice sites p are all degenerate with eigenvalue Eg (i.e. a 
Rat band), it costs no energy for the domain wall to be in another region of the 
lattice, and its centre of localization is arbitrary. 

In the above discussion, we used as our basis a set of states containing many spins, 
in which the spins are paired up into local singlets. It will turn out to be natural 
for us to use, as the basis set in our second analytical calculation, a set N of spin 
states with short-ranged singlet pairs (a member of this set is depicted in figure S(a)), 
which is not equivalent of M but is in some sense complementary to it. Both sets 
of states M and N ,  in fact, share the same two problems, namely overcompleteness 
and non-orthogonality. 

b 

c 

Pigure 5. (U) The state pa) in wliich all spins are paired up into shon-ranged singlets 
except for the spin at the ah vertex site. This Stale belongs U) the set N (see lext). 
(b) ?he Sale I*:) generated after one iteration. Note the appearance of longranged 
singlels The asterisk denotes a symmetrized bond. (c) Two of the longranged singlet 
stater included in p€"P). Once again, bonds with aslerisks have teen symmetrized. 

We illustrate these problems by considering states in the set M. The overcom- 
pleteness can be seen easily by noting that the amplitude of finding the unpaired spin 
on the ath vertex site is linearly dependent on the amplitudes of finding it on the 
nearest-neighbour a t h  and (a + 1)th backbone sites: 

I@<) = l @ J  - I@*+] ) .  (28) 
One immediate consequence of this is that there are only as many degenerate states 
in M as there are backbone sites on the lattice, whereas one might naively have 
assumed this degeneracy to be equal to the total number of sites on the lattice. 

The non-orthogonality of the states belonging to M becomes obvious when one 
calculates the overlap between its members, for instance 

P a + 1 P e )  = ; (@a I @J = f (2.9) 
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and so on. One could, if one desired, construct an orthogonal basis set from these 
short-ranged singlet states, for instance by forming Wannier orbitals as we did in 
(2.4). We shall, however, continue using states with local singlets instead of working 
with an orthogonal basis, because short-ranged singlet states like these turn out to 
provide a better description for bath classes of excitation in our model than do the 
Wannier orbitals. 

We have therefore shown that there is one type of spin-$ domain wall present in 
our model, which we have called the antispinon, and which costs no energy to create, 
essentially because its formation does not require breaking up any of the singlet pairs 
present in the ground state. Moreover, we have shown that the antispinon has a 
flat energy band associated with it and can therefore exist as a localized excitation. 
However, because of this flat band, its centre of localization is perfectly arbitrary on 
the lattice. 

Let us now discuss the second domain wall that is present in our system, which we 
will show costs approximately 0.2 J to create and has a non-trivial energy spectrum 
associated with ir It is useful for us at this point to consider the many-spin state 
1111,) (figure S(a)) belonging to the set N, which contains a single domain wall on 
the nth vertex site with all other spins paired up in local singlets. Note that is 
rather different from the state I@*) discussed previously in connection with the first 
domain wall: there is one less singlet in /qa), since the singlet pair present in the 0th 
triangle in I@*) is absent in I Q a ) .  Applying our Heisenberg Hamiltonian to 
we wn show that 

S C YSiak and M W h n g  

and we see immediately that I*@), unlike I@*), is not an eigenstate of our Hamil- 
tonian. Instead, the application of the Heisenberg Hamiltonian to IQu,) moves the 
domain wall on the nth vertex site to neighbouring sites, and in the process generates 
the states and [Yat l ) ,  together with the state IQ:) depicted in figure S(b), 
which contains longer-range singlet pairs. We note here that Ilk.:) has been con- 
structed in such a way that it is orthogonal to all three of 

It is as usual more convenient to work in reciprocal space, where (2100) becomes 
and 

in which I Q h )  and respectively, 
and where we have changed the zero of energy by subtracting E,. If we neglect 
contributions from I*;) in the first instance, we find that the domain wall represented 
by a wavepacket of the above states has a dispersion relation given by 

are the Fourier transforms of IQa)  and 

E ( k )  = [$ - c o s ( k .  R ) ]J .  (Z.loc) 

This dispersion relation (curve I in figure 6) tells us that in a minimum energy of 
0.25 J is required to create this second domain wall in our system, in contrast to 
the antispinon excitation previously discussed. The fact that our analytical calculation 
predicts an energy cost for the creation of the second class of domain wall (the 
‘spinon’) is not surprising, given that an energy gap is anticipated in our numerical 
calculations. What is surprising is the accuracy with which our mriational procedure 
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e.0 0.2 0 1  0.. ..I 8.0 

Wavevector k (db) 
Figure 6 The results of our skulatiom of spinon energy as a function of wavevector are 
summarized om lhis graph. a w e  I is obtained from ac analytical calculation of spinon 
dispersion, accurate to one iteration. Cuwe U rcprgents results of &e same ollculation 
c a n i d  out oyer two iterations. The results ol this analytical calculation mmpare vely 
well wilh numerical values for the spinon dispersion, which have been plotted as scatter 
points. 

manages to predict this gap: even the hest-order calculation above @ves an energy 
gap of 0.25 J, which compares rather well with the numerical value of - 0.2 J. 

When we include first-order corrections from the states IQ;) which contain even 
longer-ranged singlet pairs, our analytical calculation of the magnitude of this energy 
gap improves even more dramatically. We can show that 

HI";) = 2JlV;) ! jJ[;  -COS(k 'R)]lQb) t IQ:) (21M) 
where the states denoted by IQ:) are orthogonal to both /U;) and I Q b ) ,  and contain 
even longer-ranged singlet pairs which are generated as a result of a further delocal- 
ization of the domain wall from the ath vertex site to more distant sites. Examples of 
states that are included in IP:) are shown in figure S(c). If we now take contributions 
from the states IQ;) into account, but neglect terms derived from IQ:), we generate 
the Hamiltonian 

1 Z - c o s ( k . R )  ! j ( z - c o s ( k . R ) )  
9 a 

which, on diagonalization, results in the dispersion relation (curve I1 in figure 6) 

E ( k )  = 1[! 1 2  - cos (k .R) ]  f !jd[$ - cos(&. R)I2 -8[: - cos(b .R)] .  (ZlW 

There are two points to note about this dispersion curve. Firstly, the minimum 
energy required to create the spinon has been reduced to - 0.22 J, which gives 
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us the required energy gap to an extremely good approximation, even though we 
have only performed two iterations in our calculation. This must mean that our 
starting state, IrYo), represents a good description of the spinon wavefunction, since 
all our assumptions appear consistent Secondly, the spinon energy band has flattened 
considerably as a result of including the first-order contributions from states which 
contain long-ranged singlet pairs. Since long-ranged singlets are generated in our 
case by delocalizing the spinon away from its initial position in the lattice, we must 
conclude that the energy of the spinon can be reduced by allowing it to move over 
increasingly large regions in the system. This makes intuitive sense: roughly speaking, 
if we view the spinon moving within the background of spin singlets as behaving 
like a quantum particle in a box (albeit with some complicated potential to account 
for the spin background), then we can see just from simple arguments based on the 
uncertainty principle that a particle which is allowed to be delocalized Over a larger 
region of space must correspondingly have a lower (kinetic) energy associated with it. 

Hence we have shown that there are two classes of topologiCal, spin-$ domain 
walls in our Heisenberg model: the antispinon excitations which incurs no energy 
cost, and the spinon excitation which costs at least 0.2 J to create. The antispinon 
has a Rat energy band associated with it and is essentially a localized excitation. The 
spinon, in contrast, is characterized by a finite, non-zero coherence length, and its 
energy band is correspondingly non-trivial, 

At this juncture, let us remind the reader that we were led to the above calcu- 
lations by our numerical results, which show a band of states at approximately 0.2 J 
above the ground state, with total spin 1 and a flat spectrum. This last point is 
important, since a flat energy band is rather unusual and imposes constraints on any 
physical picture which one produces for the excitations. Our interpretation of these 
results is that states in the band contain two independent excitations; one spinon 
which is delocalized over a finite region of coherence, together with one antispinon 
which must be localized somewhere in the system in order far the energy spectrum 
of both excitations to be a flat band. In addition to the analytical results already 
presented, we will provide numerical evidence in the next section which supports our 
interpretation. 

Before leaving this section, there is one last point which we must make concerning 
the excitations in our model, namely that the spinon introduced above is free to 
move around its conjugate, localized excitation (the antispinon), but the topology 
of the sawtooth lattice is such that the spinon is forbidden from ever moving past 
the antispinon. We can readily prove this to be the case by considering the state 
I?!) shown in figure 7, in which the spinon is situated to the right of the antispinon 
from the reader’s viewpoint. If we calculate HI*), we find that we never generate 
states in which the spinon has moved past the antispinon to its immediate left: the 
spinon can only arrive in that position by fust moving away from the antispinon-to 
its right-and travelling once around the lattice. Hence we are led to a particularly 
simple picture for the excited states in our model in which spinon and antispinon 
domain walls ‘concertina’ against one other but do not exchange positions directly, 
and we emphasize again that such a simple picture is possible only because of the 
topology of the sawtooth lattice. 

2 2. Numerical calculations 
In this section we discuss the results of numerical calculations which support the above 
picture of spinon and antispinon excitations. Our numerical technique is straightfor- 
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Pkum 7. A pictorial represenration of a State h, the fiat excited band, mntaining one 
spinon and one antispinon. On this diagmm, the spinon has teen placed to the right of 
lhe antispinon, facing lhe reader. 

ward: we start by considering small clusters of atoms, generating the Heisenberg 
Hamiltonian within convenient sets of basis states and diagonalizing to obtain the 
eigenvalues and eigenstates. We then pmbe the nature of the solutions thus obtained 
by examining spin-spin correlations within them. We repeat our calculations for in- 
creasingly large clusters, and fmite-size scale our results for physical quantities of 
interest, such as energies and spin-spin correlations. 

Let us first present numerical evidence for the existence of two classes of domain 
wall. In order m illustrate our main points, we will discuss in detail some of the 
typical results obtained from calculations on small clusters of atoms. 

Consider the small cluster of five triangles shown in figure Wa). Solving nu- 
merically for this cluster with free boundary conditions, we find a whole range of 
eigenvalues and eigenstates, all of which have half-integer spin S = i, $, and so on. 
From within this set of eigensolutions, we observe that there are no fewer than six 
states, each having total spin i, which are all at the lowest energy of -3.75 J (cf (22) 
for the case of five triangles). On calculating correlations between nearest-neighbour 
spins in the cluster, we find that each of these degenerate states contains five uncor- 
related singlet pairs (hence their energy of -0.75 J x 5 = -3.75 J) together with 
one unpaired spin which acts as a domain wall (see, for instance, figure S(b)). In 
addition, these spin-spin correlations tell us that the sixfold degeneracy of the lowest 
eigensolutions stems from the existence of six backbone sites on which the unpaired 
spin could be situated. 

0 b 
Figure 8. (a) A small cluster of five uiangles: topology type 1. (b) Exact eigenstate 
obtained numerically. me unpaired spin acts as a domain wall. 

Such correlations and degeneracy are reminiscent of the antispinon excitation 
discussed in section 2.1, and our numerical results above clearly demonstrate the 
presence of one antispinon domain wall in the lowest eigensolution of the cluster 
of figure Wa). However, results such as these are not specific to a cluster size of 
five triangles; similar characteristics are exhibited by the lowest eigensolutions of all 
calculable clusters with similar topology, provided free boundary conditions prevail. 
In our numerical work, clusters of up to 24 a t o m  are examined. 

In addition, we have said that we find a whole range of eigenvalues and eigenstates 
for such clusters, some of which have total spin greater than i. Having interpreted 
the lowest degenerate eigensolutions as states containing one antispinon, it is natural 
for us to interpret the antispinon as being analogous to a single quantum mechanical 
particle in a box, and to view the higher cluster solutions as being the excited modes 
of the antispinon. There is, however, one subtlety which we will briefly mention here, 
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and which we will come back to. Although it has been convenient for us to use what 
is essentially a single-particle picture in interpreting the numerical results above, what 
we are really dealing with is a system containing many spins. Consequently, many- 
particle excitations are also allowed, and some of the higher excited States contain 
more than one domain wall. 

Let us digress a little from our main discussion here to formalize somewhat our 
notion of a domain wall. A quantitative signature of a domain wall in our model 
appears in the correlations of nearest-neighbour spins, calculated along the vertex 
sides of the triangles that form the sawtooth. We should point out that these ideas 
apply equally well to both the spinon and the antispinon domain wall. Referring to 
figure 8(b), suppose we systematically calculate nearest-neighbour spin correlations 
on the ‘left’ vertex sides of the triangles, i.e. (SI. SJ, (S, - S4), (S, S6), and so on. 
Plotting these correlations as a function of distance along the sawtooth, we obtain 
curve I in figure 9, where we have changed the zero of energy by adding a constant 
of 0.75 J. Curve I therefore gives us the probability of independently finding singlet 
pairs on the vertex sides 1-23-4, and SD on. Moreover, suppose now we repeat the 
above calculations, but this time for spin correlations on the ‘right’ vertex sides, ie. 
(S, . S3), (S4 . S5), (S6 .  S7), etc. We find that a similar plot of correlations versus 
distance along the chain leads to a curve (I1 in figure 9) which is the mirror image of 
curve I above. The step-like quality of these curves and their symmetry indicates that 
the following dramatic changes, centred on the small region D in figures 8(b) and 
9, occur in nearest-neighbour spin correlations: on the left of region D, singlet pairs 
are found on ‘left’ vertex sides of triangles, whilst spins on ‘right’ vertex sides are 
uncorrelated; on the right of D, singlet pairs lie on the ‘right’ vertex sides of triangles 
and spins on ‘left’ vertex sides are uncorrelated. The above changes are synonymous 
with the presence of a domain wall in region D, with the width of this region giving a 
measure of the coherence length of the domain wall. For the particular example being 
considered, the step functions are vexy abrupt, because the domain wall is assumed 
to be coherent only over one lattice spacing. It is reasonable to expect these ideas to 
also apply to a domain wall with a longer coherence length, as we will show below. 

Figure 9. A plot of nearest-neighbour spin “elations as a fundion of distance along 
the duster, as explained in the text. 

We now discuss the small cluster of triangles with the topology shown in figure 10, 
which we will henceforth refer to generically as topology type I1 (in contradistinction 
to that of figure S(u), which we will call topology I). Our motivation for choosing to 
examine topology I1 stems from the fact that the spinon and antispinon are conjugate 
excitations to each other in the same way that topology I1 is conjugate to that of 
topology I: if we connect up the two clusters of figures 8@) and 10, we find that 
together they form a periodic sawtooth lattice containing twenty atoms. 

Solving for the cluster of figure 10, we again obtain a whole range of eigenvalues 
and eigenstates, all of which have a half-integer spin of i, g, and so on. From this 
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Figure 10. A small duster of 5ve triangles: topology lype 11, which is mmplemenmry to 
&at shown in figure E@). 

set of solutions, we find that the lowest eigenstate is non-degenerate, has total spin $, 
and is at energy -3.4543 J. We note that this is a2957 J above that of its antispinon 
counterpart, which we showed earlier to have energy -3.75 J. When we examine 
the correlations between nearest-neighbour spins aIong the vertex sides of the cluster, 
we obtain a profile synonymous with that of a domain wall whose coherence length 
extends throughout the cluster. 

These results suggest that the lowest eigensolution for the cluster of figure 10 
contains one spinon domain wall, which in that particular cluster appears to cost 
0.2957 J to create. The presence of this energy gap is important: the gap here is 
much larger than the value of - 0.2 J obtained in previous calculations, but this is 
not surprising given the small size of our cluster. When we repeat our calculations 
on increasingly large clusters of topology I1 and perform a 6nite-size scaling analysis 
of our results, we once again find an energy gap of approximately 0.2 J. We are 
therefore entirely consistent in regarding the lowest eigensolutions of generic clusters 
of topology II as containing one spin-$ spinon. 

Given this interpretation, it is once again natural for us to think of the spinon in 
a small cluster as being like a particle in a box, and to view the higher eigensolutions 
of these clusters as representing either the excited modes of the spinon or states 
containing more than one spinon. Such a particle-in-a-box picture is particularly 
useful for the spinon, because it provides us with a framework with which we can 
numerically compute the spinon energy hand. 

The basic ideas are simple: by analogy with the solutions for a quantum particle 
in a box with free boundary conditions, we assume that we can sequentially label the 
excited modes of a single spinon in a Iinite-sized cluster with some quantum number 
n. Of course, for the same problem with periodic boundary conditions, this quantum 
number n is given by the wavevector k up to some constant, and we can always 
choose k to be our quantum number il we wish. Thus for each cluster size N, where 
N is equal to the number of triangles in the cluster, we obtain a set of single-spinon 
eigenvalues EP and their corresponding quantum numbers k. We then make the 
fundamental assumption that the energy of a single spinon on the sawtooth lattice is 
a universal function ol the parameter k / N ,  Le. that it depends only on cluster size 
N and on the mode k of excitation for that cluster size. This assumption implies 
that we can numerically map out the spinon dispersion curve of (2lW if we plot out 
the energies E; as a function of k / N .  The dots in figure 6 represent such a plos 
the curve which they delineate compares well with our analytical calculations. The 
latter were variational in nature, hence it is not surprising that they produce a curve 
which is higher in energy than that given by our numerical results. We have thus 
provided numerical proof of the existence of the spinon and antispinon excitations 
on the sawtooth lattice. 

Let us complete the picture by reminding the reader of the numerical results 
which led to this paper. We found, via calculations on smaU clusters of topology I 
with periodic boundary conditions, that there was an energy gap between the ground 
state and the lowest band of excited states, and that in addition this lowest band had 
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total spin 1 and was flat. We hope we have been able to convince the reader that 
the states in this band can be understood in t ems  of one spinon and one antispinon 
excitation. It only remains for us to present numerical results which show that the 
flat energy spectrum is due to the two domain walls being independent of each other, 
with the antispinon localized somewhere on the lattice and the spinon delocalized 
away from the antispinon. 

As mentioned briefly in the previous section, a flat energy band is rather unusual, 
and in this particular case we can only think of two possible causes of such a flat 
band, namely a localized spinon-antispinon excitation (cf (2.3)-(2.7)), or independent 
spinon and antispinon excitations in which the latter is localized and the brmer 
delocalized (cf (210)). 

We can distinguish between the above two possibilities by numerically constructing 
a Wnnier orbital out of eigenstates in the lowest band of excitations precisely in the 
manner described hy (2.4) and (26), and then by examining spin-spin correlations 
in the Wannier orbital thus oonstructed. These calculations show explicitly that we 
do not have a localized spinon-antispinon wavepacket, but that at least one of the 
domain walls is delocalized. We are therefore forced to conclude that the domain 
walls must be independent of each other, in which case the only possible scenario for 
a flat energy spectrum is that in which the antispinon is localized somewhere on the 
lattice and the spinon is simultaneously delocalized away from the antispinon. 

We conclude this section by thinking about excited states which contain more 
than one pair of spinon and antispinon domain walls. Using ideas discussed earlier 
in this subsection, it is clear that we can a)nstTuct such a many-particle excitation 
by joining together ‘chunks’ of the sawtooth lattice with topologies of type I and 11. 
However, in order for periodicity to prevail on the lattice, it is equally clear that we 
must connect topologies I and I1 alternately: it is not possible for two consecutive 
chunks of topology I1 to be joined up. Thus we are led to a picture of a higher excited 
state in which spinon excitations alternate with antispinon excitations (figure Il(a)). 
This is also the conclusion we reach if we apply the simple pictures for the spinon 
and antispinon domain walls which we used in our analytical work (figure ll(b)). 
Moreover, the spinons and antispinons in such a many-particle state cannot move 
past each other-they can only concertina against one another in accordance with 
our discussion at the end of section 21. 

a 

b 

Figure 11. Pictorial representations of states mntaining multiple excitations. It is clear 
I” topological mnsidemions, as s h m  in Bgure ll(u), hat  dusters of toplogy type I 
must be alternately mnnecled to clusters of topology type 11. A clearer depiction of such 
a stale is given in Bgure ll(b) with alternating spinon and antispinon excitations. 
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3. Class of models with a generic solution: holons alternating with spinons 

We begin this section with the following conjecture: that our solutions for the Heisen- 
berg model on the sawtooth lattice, consisting of a broken symmetry ground state of 
uncorrelated singlet pairs together with excited states that contain spin-; spinons in al- 
ternating sequence with their conjugate excitations, the antispinom, are not restricted 
to this system alone but are in fact generic to an entire class of quasi-onedimensional 
models. These models include some which contain mobile spinless charge carriers in 
addition to non-itinerant chargeless spins. In this section we discuss two such models, 
of interest in high-temperature superconductivity, for which the above conjecture is 
true. 

The first is the t-J model on the sawtooth lattice (subsection 3.1), which con- 
tains not only the electronic spins that interact via Heisenberg exchange as already 
discussed, but also vacancies that can hop between the lattice sites. The ground state 
of the model in the presence of one vacancy is unchanged from that without any 
vacancies: we find uncorrelated, short-ranged singlet pairs which exhibit local broken 
symmetry. We also show that the excited States contain spin-4, chargeless spinons 
which alternate with their conjugate excitations; in this w e  the spinless, charge +e 
holons. 

We then introduce in subsection 3.2 the so-called X-model for the copper-oxygen 
(Cu-0) plane of peromkite superconductors, in which oxygen holes bop onto neigh- 
bouring oxygen sites via Cuf excitations. We discuss this model on a restricted 
geometry, namely the quasi-onedimensional chain of copper-oxygen atoms that is 
found within each copper-oxygen plane (figure lZ(a)). We solve for the X-model on 
this Cu-0 chain by analogy with the t-J model on the sawtooth lattice, and argue 
that the ground states of both models consist of uncorrelated, short-ranged singlet 
pairs which exhibit the same broken symmetry. Further, we argue that our simple 
picture for the excited states of the t-J model, in which spinons alternate with their 
conjugates, is also valid for the Cu-0 chain: excitations of the chain consist of spin-4, 
chargeless spinons alternating with spinless, charge +e holons. 

0 0 0 0 0 

0 C" 0 C" 0 c u  0 C" 0 cu 0 C" 0 C" 0 C" 0 C" 0 

0 0 0 0 0 
(1 

0 0 O\(l, 0 0 

0 C" o c u o  C" O C U  0 ct: p . 0  C" O C U O  C" 0 

0 0 &i 0 0 

b 
Figure U (a) The Cu-0 chain discussed in szcrion 12. (b) The oxygen hole hopping 
precess allowed in our Xmodel are depicted in lhh diagram. Each hopping process 
mntains two stages: (i) Ihe Cu hole h o p  onto an empty 0 site, generating Cut 
eicitations and (ii) is place is taken by an incoming 0 hole. 

3.1. The t-J model on the sawtooth lattice 

The 1-J model is capable of describing the physical properties of magnetic insulators 
that contain mobile charged vacancies, and has therefore come under intense scrutiny 
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recently because of its possible relevance to the perovskites. The t-J Hamiltonian 
on an arbitraly lattice is given by 
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where c:, as usual aeates one electron at lattice site i with spin U’, c;,,, is its con- 
jugate operator, the spins U and b’ are conjugate to each other, S; denotes the spin 
operator at the ith lattice site, and both summations are over all nearest-neighbour 
lattice sites. The first term describes the hopping of charged +e vacancies between 
neighbouring lattice sites, the hopping energy being denoted by the parameter 1. The 
presence of the pair of projection operators (1 - cf,,cro,) ensures that none of the 
lattice sites is doubly occupied in the hopping pmcess. The magnetic properties of 
the system are described by the second term in Hamiltonian (3.1), which represents 
none other than the Heisenberg interactions between electronic spins on neighbouring 
lattice sites, with J denoting the exchange energy, as in the previous section. 

It is not our intention here to discuss the t-J model in any generality, but we 
wish to point out that there are three free parameters in Hamiltonian (3.1), namely: 
(i) the topology of the underlying lattice; (ii) the number of vacancies in the system, 
or more precisely, their concentration; and (i) the magnitude the dimensionless ratio 
t f J which, in turn, is set by the energy scales for hopping and Heisenberg exchange, 
respectively. 

In the following discussion, we restrict our attention to the sawtooth lattice, and 
for this particular topology, we concentrate on solutions of the t-J model in the 
presence of a single charged vacancy or hole. The t-J model on the sawtooth 
lattice has been partially discussed in a previous paper; our aim here is to extend the 
discussion of Long and Fehrenbacher [ll] by proving via simple physical arguments 
that this t-J model exhibits the generic solutions which form the main thrust of this 
article, 

It is simplest and most illuminating to examine the above 1-J model firstly in two 
obvious, extreme limits for the value of the ratio t f J ,  and then to proceed to general 
values of t and J .  These two limits are firstly t f J -+ 00, where t > 0 and J = 0, 
and secondly t f J = 0, where t = 0 and J > 0. 

In the former limit, in which 1 > 0 and J = 0 (Le. 1 / J -+ m), the Heisenberg 
term in the t-J Hamiltonian (3.1) drops out. Because there is no longer any explicit 
spin interaction present in the problem, one might naively have thought that the 
kinetic energy of the charged vacancy would be independent of the background spin 
configuration. This is not the case, however: the numre of the magnetic background 
is in fact cr~cial  to the problem, and solving for the ground state of the model is 
equivalent to determining the spin correlations which minimize the hopping kinetic 
energy of the vacancy. 

The above problem appears to have been first tackled by Nagaoka [12], who 
proved that the background spins on any bipartite lattice must be ferromagnetically 
correlated in order for the kinetic energy of a single vacancy hopping between the 
lattice sites to be minimized. However, Nagaoka’s result does not necessarily hold 
for topologically frustrated lattices, where for instance antiferromagnetic correlations 
might be energetically more favourable. Indeed, in the case of the sawtooth lattice, 
we can prove both analytically and numerically that the hopping kioetic energy of a 
single vacancy is minimized in the presence of a spin background in which all spins are 
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paired up locally into short-ranged singlets, with no correlations whatsoever between 
any two pairs of singlets (as depicted in figure 13). Such a state is exactly reminiscent 
of the Heisenberg ground state described in section 2 (see figure 2). 

Figure U A mmponent of the gruund state of the t-J model on the sawtooth latticc 
The tines in bold represent singlet correlations. The state shown is the exact ground 
state of the model for the hole h position indicated on the diagram. 

There are three steps to understanding this result. Firstly, we observe that the 
smallest closed loop on the sawtooth lattice is a single triangle. Secondly, if we 
suppose that the single hole in our model is present in a particular triangle, then 
we note here that the hopping kinetic energy of the hole around that triangle is 
minimized if the two spins on the remaining lattice sites of the triangle are paired 
up into an exact singlet (see later). Finally, since the hole in our model can arrive at 
m y  triangle, it follows that the spins in all remaining triangles of the lattice should 
also be in exact, short-ranged singlet pairs, in order that the hopping kinetic energy 
of the hole be minimized everywhere on the lattice. 

The above line of reasoning depends critically on our second assertion, which we 
now prove. Let us consider a single triangle containing one hole and two spins at its 
lattice sites,with none of the sites being doubly occupied. Suppose in the first instance 
that the two spins are parallel to one another and paired up as a triplet. There are 
three allowed states (see figure 14); one corresponding to each possible position of 
the hole. Using these states as a basis set, we can write the Hamiltonian (3.1) in 
matrix form as 

H =  1 0  t (3.2) [: : :i 
which upon diagonalization, produces a ground state 

1 112 . 
(3.26) P o )  = ( 5 )  I t 4  - 1 4 1  

Eo = -t. (3.2) 

(see figure 14 for notation) corresponding to a ground state energy 

On the other hand, if we assume the two spins in the triangle to form a singlet bond, 
then there are still three possible states which form a basis set (see figure U), but 
the t-J Hamiltonian now becomes 

H =  -t 0 -t (3.34 
[:t 1: :] 

with the negative signs arising from the antisymmetry of the singlet pairs. The 
matrix (3.3~) leads, upon diagonalization, to a ground state (see figure IS) given by 

Iq,) = ($)'"I!l) + 12) t 141 (3.36) 
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which has as its corresponding eigenvalue 
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Eg = -21. (3.34 

Consequently, the ldnetic energy of a vacancy hopping around a triangle is halved if 
the spins on the remaining two lattice sites are forced into singlet pairing as opposed 
to triplet pairing. It can moreover be shown that there is a lower bound for the 
kinetic energy of a vacancy hopping on a lattice with coordination number z, and 
that this minimum kinetic energy is given by 

E,,i, = -21. (3.4) 

Therefore, in the case of a single triangle, the lower bound on the kinetic energy of 
the holc is -2t ,  and the minimum is achieved by having singlet correlations between 
the spins in the triangle, thus proving our earlier assertion. The physical reason for 
singlet pairing being favourable for hole motion in a triangle is rather subtle [13]; 
we merely note here that in the t-J model, there is a phase factor of -t associated 
with each hop of the hole once between any two nearest-neighbour sites, and that the 
presence of these phase factors means that hole motion around the triangle is in fact 
frustrated unless the spins in the triangle form a single. 

h I 

Figure 14. Set of basis slates containing one hole and two parallel spins a1 the lattice 
sites of a single triangle. 

I1> 12) 13) 

Figure 15. Set of basis states mnlaining one hole and two antiparallel spins at the lattice 
sites of a viangle thal are paired up into a dngler 

We have therefore shown the ground state of the t-J model on the sawtooth lat- 
tice, in the limit t /  J --t CO, to be a linear superposition of states such as that depicted 
in figure 13. However, such states are already familiar to us from section 2 it appears 
that for the sawtooth topology, the spin-spin correlations which are favourable for 
hole hopping are precisely those preferred by the Heisenberg exchange interaction 
between the spins themselves. Hence the full t-J model (Le. when t > 0,  J > 0 )  on 
the sawtooth lattice is exactly solvable: the ground state described in the preceding 
paragraph is unchanged when the Heisenberg exchange interaction J is 'switched on'. 

Alternatively, we could begin by considering the Heisenberg model on the saw- 
tooth lattice and asking about what happens when a single electronic spin is removed 
from the system, in the limit 1 / J  = 0,  Le. when 1 = 0,  J > 0. If one spin is removed, 
it is clear that at least one of the singlet pairs present in the ground state must break 
up. In fact, from our howledge of the excitations of the Heisenberg model on the 
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sawtooth topology, we can immediately deduce that the hole acts as, or becomes, 
the antispinon excitation, since no energy is required for it to do so. In addition, 
we also h o w  that there is a spin-$ spinon excitation present in the system, and that 
the hole and the spinon prefer to be well separated from one another. Because 
the same spin-spin correlations are favourable for both hole motion and Heisenberg 
interactions in the model, the picture we have just described is in fact little changed 
when the hole is given a finite, non-zero hopping kinetic energy (Le. away from the 
limit t / J  = 0): the hole and the spinon remain apart from each other, but the hole 
is free to delocalize around the spinon. 

We have therefore proven that in the presence of a single vacancy, there are two 
elementary excitations in the t-J model on the sawtooth lattice which fall into dis- 
tinct classes: a spinless, charge + e  hole excitation, or holon, and a spin-$, chargeless 
spin excitation, or spinon. The holon and spinon appear quite naturally to be weIl 
separated from one another in our model, thereby exhibiting the spin-charge separa- 
tion one would expect. More generally, in the presence of many vacancies, we expect 
from our preceding discussion to lind excited states which contain holons alternating 
with spinons. Hence the 1-J model on the sawtooth lattice exhibits the same generic 
solutions as those discussed in the previous section. 

3.2. R e  X-model for q g m  hole hopping on a copper-oxide chain 

In this subsection, we discuss a model for oxygen hole hopping in the copper-oxygen 
planes of the perovskite superconductors; the so-called X-model mentioned earlier. 
In the X-model, each oxygen hole is allowed to hop onto any neighbouring oxygen 
site (and in principle back onto its initial site) via virtual Cu+ excitations at the 
intermediate copper sites, in contrast to the t-J model where the Eansfer of oxygen 
holes is assumed to proceed via Cu3+ excitations. There is therefore an important 
conceptual difference between the two models: whilst the spin of an oxygen hole 
can effectively be ignored in the i-J model, in which case it is useful to regard the 
oxygen hole simply as a vacancy hopping in a spin background, the spin of each 
oxygen hole in the X-model plays a critical role in determining its physical properties 
and cannot be ignored. Consequently, an oxygen hole in the X-model must be 
thought of explicitly as carrying not only charge +e but also spin 4. 

The Hamiltonian for the X-model is 

(3.5) 

where d!, is an operator which creates one hole with spin U at the ith copper 
sire, p i , , ,  creates one hole with spin cr’ at the jth oxygen site, while di, ,  and pj, 
are the respective Hermitian conjugates (with appropriate spins). In addition, the 
parameter X sets the hopping kinetic energy scale in the model. The oxygen hole 
hopping process, as described by the Hamiltonian of (3.5), therefore proceeds via 
intermediate copper sites, and contains two stages: the spin at the intermediate CU 
site hops onto an allowed 0 site, thus generating a virtual Cut excitation, but the 
latter is then immediately destroyed by the incoming 0 hole (figure 12(b)) whose spin 
replaces that of the missing spin on the Cu site. 

Clearly, as mentioned previously, each oxygen hole can in principle hop either on 
to any of the oxygen sites neighbouring it or incleed onto its initial site. Our work 
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in this section assumes, however, that the latter possibility is excluded. This i s  an 
important constraint, which, together with a second crucial restriction (see below), 
enables us to obtain exact and simple solutions. 

Our motivation for examining the X-model lies in the fact that x-ray photospec- 
troscopy measurements [14] appear to indicate the importance of Cut excitations in 
the perwkites, and suggest that such excitations may well dominate over and above 
Cu3+ excitations. If that is the case, then it is clear that the X-model will provide a 
more realistic description of the high-temperature superconductors. 

We discuss our constrained X-model-that is to say a model in which oxygen 
holes are allowed to hop only onto neighbouring oxygen sites--oa a restricted sub- 
geometry of the copper-oxide plane. We choose as our sub-geometry the quasi- 
one-dimensional chain of the copper-oxygen atoms that is found within each of the 
planes (figure 12(u)). In particular, we solve for the X-model on one such Cu- 
0 chain and show that its ground state in the presence of a single oxygen hole 
consists of uncorrelated, short-ranged singlet pairs of copper spins which exhibit the 
broken symmetry reminiscent of the sawtooth lattice solutions discussed previously. 
In addition, we demonstrate that our simple picture for the excited states of the 
Heisenberg model on the sawtooth topology, in which spinons alternate with their 
conjugates, is also valid for the X-model on the Cu-0 chaii: excitations in the latter 
consist of spin-4, chargeless spinons alternating with their conjugates, which in this 
case (as in the case of the 1-J model discussed in the previous section) are spinless, 
charge +e hole excitations or ‘holons’. 

Let us stress, however, that the above solutions are not general to the X-model on 
a chain of Cu and 0 atoms, but in fact require two constraints. Fmtly, the geometry 
of the one-dimensional Cu-0 chain must be precisely as shown in figure lZ(u) [14]. 
Secondly, oxygen hole hopping within such a chain must be restricted so as to exclude 
the possibility of the oxygen holes hopping back onto their initial sites (cf earlier 
discussion). 

It will be useful for our purposes to regard the Cu-0 chain as being made up 
of units consisting of two elements: groups of four oxygen atoms surrounding one 
central copper atom, together with Linear sequences of O-Cu-0 atoms. We will refer 
to the former as clusters (figure 17(u)) and the latter as links (figure 18). 

Solving for the X-model involves, as it did in the case of the t-J model, deter- 
mining the nature of correlations between the Cu spins, induced as a result of oxygen 
hole hopping, which are in fact most favourable for the hopping of the oxygen hole. 
We can then prove by analogy with our arguments for the t-J model that the hopping 
kinetic energy of such an oxygen hole is minimized if spins at the Cu sites are paired 
up exactly into local singlets, with no correlations whatsoever between any two pairs 
of singlets (figure 16(a)). The state shown in figure 16(0) clearly has the same generic 
form as our previous solutions: to the left of the oxygen hole in figure 16(u), Cu spins 
at the centre of clusters are paired up with the Cu spins lying on links immediately 
to their right, while to the right of the oxygen hole, Cu spins at the centre of clusters 
form singlet pairs with the Cu spins lying on links immediately to the left of the 
clusters, thus exhibiting the broken symmetry reminiscent of the sawtooth lattice. 

The arguments are as follows In the X-model, a single 0 hole in the Cu-0 chain 
of figure 12 is allowed to hop onto any of the 0 sites nearest it, so long as it does 
so via the intermediate Cu atoms, generating Cu+ excitations in the process. Hence 
in any one hop, such an oxygen hole can move within one of the two possible types 
of units which make up the chain, namely a cluster of atoms or a Link (as previously 
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b 

Figure 16. (a) A mmponent of the ground Stale of our X-model oa the Ch-0  chain. 
?he state shown is the mact ground state for the okygen hole h parition indicated. (b) 
A pictorial representation of an excited State of the Cu-0 chain: mCitations in our 
X-model mnsist of spinlgs, charge +e holons (h) and Spin-$, chargeless spinons (S). 
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Fignre 17. (U) A cluster of 01-0 atoms. (b) Set of basis States mntaining an 0 hole 
in parallel alignment with the Cu hole on a cluster of atoms. (c) Set of basis states 
mntaining an 0 hole in antiparallel alignment with lhe Cu hole such that lhey form a 
singlet pair. 

0 C" 0 

Figure 18. A link oi Cu-0 atoms. 

defined). For simplicity, let us io the Erst instance restrict ourselves to the case of 
oxygen hole hopping within a single cluster of atoms (figure 17(u)). 

Within our constrained X-model, it is assumed that the single 0 hole is able 
to hop onto any of the three neighbouring 0 sites in the cluster. Suppose in the 
first instance that the spins of the 0 hole and the Cu electron are parallel to one 
another and form a triplet pair. Four such triplet states are possible (figure 17(b)), 
one corresponding to each allowed position of the oxygen hole. In that case, the 
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hopping of the 0 hole generates the following Hamiltonian for the X-model: 

S C Y Sink and M W h n g  

r o  X X Xi 

The matrix in (3.6) leads, upon diagonalization, to a ground state with energy E,, = 
-XX. If, on the other hand we assume the spins of the oxygen hole and the copper 
electron to be antiparallel and to form a singlet pair, then there are once again 
obviously four such states which form a basis set (figure 17(c)), but we 6nd that in 
this new basis, the Hamiltonian for the hopping of the oxygen hole in the X-model 
becomes 

r 0 -x -x -Xl ..=I-” -x -x O -2 I”] 
-x -x -x 0 

(3.7a) 

The negative phases in the matrix elements above arise as a direct consequence of 
the antisymmetry of the singlet pairs and produce a ground state 

IQ,) = ( 4 ) W )  + P)+ 13) + HI (3.7b) 

which has a corresponding eigenvalue of 

Eg = -3x. (3.74 

Our results therefore show that the formation of a singlet pair hefween the spin of 
the 0 hole and that of the central Cu atom is more favourable for 0 hole hopping 
within the cluster than is the corresponding formation of a triplet pair. Moreover, 
it is clear from the general result expressed in (3.4) that the energy in (3.7~) above 
is in fact the minimum allowed kinetic energy for an oxygen hole hopping in such a 
cluster. We therefore conclude that the hopping kinetic energy of a single 0 hole 
within a cluster of atoms on the Cu-0 chain is minimized via the formation of an 
exact 0-Cu singlet. 

Similarly, we can prove that the hopping of a single 0 hole within a link of 
0-Cu-O atoms (figure 18) is made most favourable by exact singlet pairing between 
the spins of the 0 hole and the Cu electron. In this instance, such pairing leads to 
a hopping kinetic energy for the 0 hole of -X, compared to the hopping energy of 
X which is returned by triplet pairing. We have therefore proven that exact singlet 
correlations are preferred locally by the 0 hole in our model. 

We now observe that within the A’-model, the oxygen hole can in principle hop 
into any cluster of the Cu-0 chain, and that the total spin of atoms in each unit 
of cluster and link is conserved in this hopping process. Next, we note that the 
constraints in our model are such that the oxygen hole, no matter what its position 
along the Cu-0 chain, is always able to minimize its kinetic energy by forming an 
aucf  singlet pair with a local copper spin. Such low-spin correlations, favoured 
locally by the oxygen hole, must be conserved in the process of oxygen hole hopping 
in accordance with our previous observation. It therefore follows that in hopping 
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through the Cu-O chain, the charge +e oxygen hole in our model effectively leaves 
behind a trail of Cu spins which are paired up into exact, local singlet pairs, giving 
rise to the state depicted in figure la@).  We emphasize once again that this result is 
not general to the X-model, but is obtained provided the two essentially topological 
constraints described earlier are imposed. 

Moreover, the doped oxygen hole, which carries a spin of 5 in addition to a 
charge of +e, must necessarily also leave behind one unpaired spin-; Cu spin in the 
chain (see figure 16(b)). It can be seen from figure 16(b) that this must be the case 
on the grounds of periodicity, with the unpaired Cu spin being parallel with the spin 
of the 0 hole. Our preceding analysis indicates that it would in fact he energetically 
unfavourable for the unpaired Cu spin to be near the 0 hole, and we therefore 
expect them to he well separated. Furthermore, the existence of one unpaired Cu 
spin implies the breaking up of at least one of the many consecutive singlet pairs 
in the ground state, which must in turn incur a finite, non-zero energy cost. In the 
context of our previous discussion, we can identify the unpaired Cu spin as a spin- 
1 chargeless spin excitation, or spinon, and the 04.1 singlet in figure 16(b) as a 
2.. spmless, charge +e hole excitation, or holon. 

We have therefore shown that in the presence of a single 0 hole, the lowest-lying 
solutions for the X-model on the Cu-O chain fall into the same generic class as 
those of the t J  model on the sawtooth lattice: there is a broken-symmetry ground 
state consisting of uncorrelated, short-ranged singlet pairs of Cu spins together with 
two classes of excitations, namely spin.;, chargeless spinons and spinless, charge +e 
holons. It is clearly conceivable that other models may be found which exhibit the 
same generic solutions, as we conjectured at the beginning of this section. 

However, because the two types of excitations in these models must alternate 
with one another as a result of topological constraints, this unfortunately means that 
the class of model under discussion in this article can never undergo a supercon- 
ducting transition: holons in any excited 5tate must alternate with spinons and two 
holons cannot therefore approach each other. On the other hand, should topological 
constraints be lifted, there appears to be no a priori reason to exclude the possibil- 
ity of the holons in these models pairing up in some way. Work on constructing 
two-dimensional systems with simple ground states is therefore continuing. 

4. Summary and conclusions 

In this paper, we have discussed a topologically frustrated spin-; quantum mc- 
chanical Heisenberg model with unusually simple solutions: its doubly degenerate 
broken-symmetry ground state is exactly dimerized, and there is an energy gap to its 
excitations. We interpret the excitation gap as being due to the formation of two 
(chargeless) spin.; domain walls. Because of a topological asymmetry in our model, 
the domain walls fall into hvo classes: one class (spinons) incurs an energy penally, 
whilst the second (antispinons) costs no energy to create. Moreover, we shown that 
there are high-T, models which exhibit the same generic solutions as those found 
in our frustrated magnet In particular, we concentrate on a d-p model contain- 
ing a single oxygen vacancy which we solve on a sub-geometry of the copper-oxide 
plane of the perovskite superconductors. We show that the ground state of our d-p 
model contains uncorrelated, short-ranged copper singlet pairs, whilst excitations in 
the model consist of chargeless spin-$ domain walls or ’spinons’, together with charge 
+e spinless hole excitations or ‘holons’. 
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